Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Cell Infect Microbiol ; 13: 1252515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965258

RESUMO

Introduction: Severe Legionnaires' disease (LD) can lead to multi-organ failure or death in 10%-30% of patients. Although hyper-inflammation and immunoparalysis are well described in sepsis and are associated with high disease severity, little is known about the immune response in LD. This study aimed to evaluate the immune status of patients with LD and its association with disease severity. Methods: A total of 92 hospitalized LD patients were included; 19 plasmatic cytokines and pulmonary Legionella DNA load were measured in 84 patients on the day of inclusion (day 0, D0). Immune functional assays (IFAs) were performed from whole blood samples collected at D2 and stimulated with concanavalin A [conA, n = 19 patients and n = 21 healthy volunteers (HV)] or lipopolysaccharide (LPS, n = 14 patients and n = 9 HV). A total of 19 cytokines (conA stimulation) and TNF-α (LPS stimulation) were quantified from the supernatants. The Sequential Organ Failure Assessment (SOFA) severity score was recorded at D0 and the mechanical ventilation (MV) status was recorded at D0 and D8. Results: Among the 84 patients, a higher secretion of plasmatic MCP-1, MIP1-ß, IL-6, IL-8, IFN-γ, TNF-α, and IL-17 was observed in the patients with D0 and D8 MV. Multiparametric analysis showed that these seven cytokines were positively associated with the SOFA score. Upon conA stimulation, LD patients had a lower secretion capacity for 16 of the 19 quantified cytokines and a higher release of IL-18 and MCP-1 compared to HV. IL-18 secretion was higher in D0 and D8 MV patients. TNF-α secretion, measured after ex vivo LPS stimulation, was significantly reduced in LD patients and was associated with D8 MV status. Discussion: The present findings describe a hyper-inflammatory phase at the initial phase of Legionella pneumonia that is more pronounced in patients with severe LD. These patients also present an immunoparalysis for a large number of cytokines, except IL-18 whose secretion is increased. An assessment of the immune response may be relevant to identify patients eligible for future innovative host-directed therapies.


Assuntos
Interleucina-18 , Doença dos Legionários , Humanos , Fator de Necrose Tumoral alfa , Lipopolissacarídeos , Doença dos Legionários/complicações , Citocinas
2.
Clin Immunol ; 226: 108714, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33741504

RESUMO

Lipopolysaccharide (LPS) and monophosphoryl lipid A (MPLA) induce, overall, similar transcriptional profiles in healthy individuals, although LPS has been shown to more potently induce pro-inflammatory cytokines. We explore herein whether MPLA could be considered as a synthetic replacement of LPS in immune functional assays to study anergy of immune cells in septic patients. Ex vivo whole blood stimulation with MPLA revealed a lower induction of the TNFα secreted protein in 20 septic patients (SP) compared to 10 healthy volunteers (HV), in agreement with monocyte anergy. Principal component analysis of the 93-gene molecular response to MPLA and LPS stimulation found that the main variability was driven by stimulation in HV and by pathophysiology in SP. MPLA was a stronger inducer of the HLA family genes than LPS in both populations, arguing for divergent signalling pathways downstream of TLR-4. In addition, MPLA appeared to present a more informative stratification potential within the septic population.


Assuntos
Hospedeiro Imunocomprometido/imunologia , Lipídeo A/análogos & derivados , Lipopolissacarídeos/imunologia , Sepse/imunologia , Idoso , Idoso de 80 Anos ou mais , Citocinas/imunologia , Feminino , Humanos , Inflamação/imunologia , Lipídeo A/imunologia , Masculino , Monócitos/imunologia , Estudos Prospectivos , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia
3.
BMJ Open ; 10(11): e041268, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33234651

RESUMO

INTRODUCTION: The COVID-19 pandemic caused by SARS-CoV-2 threatens global public health, and there is an urgent public health need to assess acquired immunity to SARS-CoV-2. Serological tests might provide results that can be complementary to or confirm suspected COVID-19 cases and reveal previous infection. The performance of serological assays (sensitivity and specificity) has to be evaluated before their use in the general population. The neutralisation capacity of the produced antibodies also has to be evaluated. METHODS AND ANALYSIS: We set up a prospective, multicentric clinical study to evaluate the performance of serological kits among a population of healthcare workers presenting mild symptoms suggestive of SARS-CoV-2 infection. Four hundred symptomatic healthcare workers will be included in the COVID-SER study. The values obtained from a control cohort included during the prepandemic time will be used as reference. A workflow was set up to study serological response to SARS-CoV-2 infection and to evaluate antibody neutralisation capacity in patients with a confirmed SARS-CoV-2 infection. The sensitivity and specificity of the tests will be assessed using molecular detection of the virus as a reference. The measurement of IgM and IgG antibodies will be performed once per week for 6 consecutive weeks and then at 6, 12, 18, 24 and 36 months after the diagnosis. The kinetics of IgM and IgG will determine the optimal period to perform serological testing. The proportion of false negative PCR tests in symptomatic subjects will be determined on the basis of subsequent seroconversions. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the national review board for biomedical research in April 2020 (Comité de Protection des Personnes Sud Méditerranée I, Marseille, France) (ID RCB 2020-A00932-37). Results will be disseminated through presentations at scientific meetings and publications in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04341142.


Assuntos
Anticorpos Antivirais/análise , COVID-19/diagnóstico , Programas de Rastreamento/métodos , Pandemias , SARS-CoV-2/imunologia , COVID-19/epidemiologia , Feminino , Humanos , Masculino , Estudos Prospectivos , Testes Sorológicos
4.
Sci Rep ; 10(1): 16136, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999313

RESUMO

The complexity of sepsis pathophysiology hinders patient management and therapeutic decisions. In this proof-of-concept study we characterised the underlying host immune response alterations using a standardised immune functional assay (IFA) in order to stratify a sepsis population. In septic shock patients, ex vivo LPS and SEB stimulations modulated, respectively, 5.3% (1/19) and 57.1% (12/21) of the pathways modulated in healthy volunteers (HV), highlighting deeper alterations induced by LPS than by SEB. SEB-based clustering, identified 3 severity-based groups of septic patients significantly different regarding mHLA-DR expression and TNFα level post-LPS, as well as 28-day mortality, and nosocomial infections. Combining the results from two independent cohorts gathering 20 HV and 60 patients, 1 cluster grouped all HV with 12% of patients. The second cluster grouped 42% of patients and contained all non-survivors. The third cluster grouped 46% of patients, including 78% of those with nosocomial infections. The molecular features of these clusters indicated a distinctive contribution of previously described genes defining a "healthy-immune response" and a "sepsis-related host response". The third cluster was characterised by potential immune recovery that underlines the possible added value of SEB-based IFA to capture the sepsis immune response and contribute to personalised management.


Assuntos
Choque Séptico/classificação , Choque Séptico/patologia , Idoso , Biomarcadores/sangue , Infecção Hospitalar , Enterotoxinas/imunologia , Feminino , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Antígenos HLA-DR/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/normas , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Estudo de Prova de Conceito , Sepse/metabolismo , Choque Séptico/mortalidade , Fator de Necrose Tumoral alfa/metabolismo
5.
Clin Immunol ; 210: 108312, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760096

RESUMO

Recent advances in the immunotherapy field require evaluation of the immune function to adapt therapeutic decisions. Immune functional assays (IFA) are able to reveal the immune status and would be useful to further adapt and/or improve patient's care. However, standardized methods are needed to implement IFA in clinical settings. We carried out an independent validation of a published method used to characterize the underlying host response to infectious conditions using an IFA. We evaluated the reproducibility and robustness of this IFA and the associated readout using an independent healthy volunteers (HV) cohort. Expression of a 44-gene signature and IFNγ protein secretion was assessed after stimulation. We observed a strong host-response correlation between the two cohorts. We also highlight that standardized methods for immune function evaluation exist and could be implemented in larger-scale studies. This IFA could be a relevant tool to reveal innate and adaptive immune dysfunction in immune-related disorders patients.


Assuntos
Imunoensaio/normas , Interferon gama/metabolismo , Padrões de Referência , Imunidade Adaptativa , Adulto , Idoso , Células Cultivadas , Estudos de Coortes , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Transcriptoma/imunologia
6.
Front Immunol ; 9: 2367, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386334

RESUMO

The immune response is a dynamic system that maintains the integrity of the body, and more specifically fight against infections. However, an unbalanced host immune response is highlighted in many diseases. Exacerbated responses lead to autoimmune and allergic diseases, whereas, low or inefficient responses favor opportunistic infections and viral reactivations. Conflicting situations may also occur, such as in sepsis where inflammation and compensatory immunosuppression make it difficult to deploy the appropriate drug treatment. Until the current day, assessing the immune profile of patients remains a challenge. This is especially due to the inter-individual variability-a key feature of the immune system-which hinders precise diagnosis, prognosis, and therapeutic stratification. Our incapacity to practically interpret the host response may contribute to a high morbidity and mortality, such as the annual 6 million worldwide deaths in sepsis alone. Therefore, there is a high and increasing demand to assess patient immune function in routine clinical practice, currently met by Immune Functional Assays. Immune Functional Assays (IFA) hold a plethora of potentials that include the precise diagnosis of infections, as well as prediction of secondary and latent infections. Current available products are devoted to indirect pathogen detection such as Mycobacteria tuberculosis interferon gamma release assays (IGRA). In addition, identifying the status and the underlying factors of immune dysfunction (e.g., in septic patients) may guide immune targeted therapies. Tools to monitor and stratify the immune status are currently being studied but they still have many limitations such as technical standardization, biomarkers relevance, systematic interpretation and need to be simplified, in order to set the boundaries of "healthy," "ill," and "critically ill" responses. Thus, the design of new tools that give a comprehensive insight into the immune functionality, at the bedside, and in a timely manner represents a leap toward immunoprofiling of patients.


Assuntos
Imunoensaio , Medicina de Precisão/métodos , Medicina de Precisão/normas , Animais , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos
7.
Front Immunol ; 9: 3048, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687307

RESUMO

Sepsis, which is the leading cause of death in intensive care units (ICU), has been acknowledged as a global health priority by the WHO in 2017. Identification of biomarkers allowing early stratification and recognition of patients at higher risk of death is crucial. One promising biomarker candidate is pentraxin-3 (PTX3); initially elevated and persistently increased plasma concentration in septic patients has been associated with increased mortality. PTX3 is an acute phase protein mainly stored in neutrophil granules. These cells are responsible for rapid and prompt release of PTX3 in inflammatory context, but the cellular origin responsible for successive days' elevation in sepsis remains unknown. Upon inflammatory stimulation, PTX3 can also be produced by other cell types, including endothelial and immune cells. As in septic patients immune alterations have been described, we therefore sought to investigate whether such cells participated in the elevation of PTX3 over the first days after septic shock onset. To address this point, PTX3 was measured in plasma from septic shock patients at day 3 after ICU admission as well as in healthy volunteers (HV), and the capacity of whole blood cells to secrete PTX3 after inflammatory stimulation was evaluated ex vivo. A significantly mean higher (100-fold) concentration of plasma PTX3 was found in patients compared to HV, which was likely due to the inflammation-induced initial release of the pre-existing PTX3 reservoir contained in neutrophils. Strikingly, when whole blood was stimulated ex vivo with LPS no significant difference between patients and HV in PTX3 release was found. This was in contrast with TNFα which decreased production was illustrative of the endotoxin tolerance phenomenon occurring in septic patients. Then, the release of PTX3 protein from a HV neutrophil-free PBMC endotoxin tolerance model was investigated. At the transcriptional level, PTX3 seems to be a weakly tolerizable gene similar to TNFα. Conversely, increased protein levels observed in anergy condition reflects a non-tolerizable phenotype, more likely to an anti-inflammatory marker. Hence, altered immune cells still have the ability to produce PTX3 in response to an inflammatory trigger, and therefore circulating white blood cell subset could be responsible of the sustained PTX3 plasma levels over the first days of sepsis setting.


Assuntos
Proteína C-Reativa/metabolismo , Neutrófilos/imunologia , Componente Amiloide P Sérico/metabolismo , Choque Séptico/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteína C-Reativa/análise , Proteína C-Reativa/imunologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Estudos Prospectivos , Componente Amiloide P Sérico/análise , Componente Amiloide P Sérico/imunologia , Choque Séptico/sangue , Choque Séptico/diagnóstico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...